Posts Tagged ‘Server 2008’

DNS keeps track of Information in Zones. Essentially, a zone is a flat-file database for a particular domain, such as http://www.Google.com. The zone can contain different rexord types, all of which can be queried by clients:

> A : Which i a Host Address record – this resolves a single host name. suck as www, to an IP address.

> CNAME : or Alias – This resolves a name such as www to an actual host name, such as www1. think of it as a nickname for a computer -“www”, for example, is easier to remember and more standardized than a computer name like “w4salwin” which is what a Web Server’s real name might be.

> MX : or Mail Exchanger – This provides the name of the mail server for a Domain. Multiple MX records can be provided for fault tolerance or load balancing and a prioroty assigned to each. Clients, Such as sending mail servers, will attempt to contact the server in the MX record with the lowest-Numbered Priority.

> AAAA – This maps an IPv6 IP address to a host name.

> SRV: or Service – This provides the IP address of  one or more servers providing a particular service. AD uses SRV records to allow clients to locate Domain Controllers, among other things.

> SOA: or Start of Authority – This Special record indicates that the DNS Server hosting the zone is authoritative for the zone and is the primary source of name resolution for hosts within that domain.

All active directory data base security related information store in SYSVOL folder and it’s only created on NTFS partition.

In Microsoft Windows, the System Volume (Sysvol) is a shared directory that stores the server copy of the domain’s public files that must be shared for common access and replication throughout a domain. The term SYSVOL refers to a set of files and folders that reside on the local hard disk of each domain controller in a domain and that are replicated by the File Replication service (FRS). Network clients access the contents of the SYSVOL tree by using the NETLOGON and SYSVOL shared folders.

The Sysvol folder on a Windows domain controller is used to replicate file-based data among domain controllers. Because junctions are used within the Sysvol folder structure, Windows NT file system (NTFS) version 5.0 is required on domain controllers throughout a Windows distributed file system (DFS) forest.

ReplMon can do the following:

  • See when a replication partner fails.
  • Display changes that have not yet replicated from a given replication partner.
  • Trigger the Knowledge Consistency Checker (KCC) to recalculate the replication topology.
  • View the history of successful and failed replication changes for troubleshooting purposes.
  • Find all direct and transitive replication partners on the network.
  • View the properties of directory replication partners.
  • Display the metadata of an Active Directory object’s attributes.
  • Poll replication partners and generate individual histories of successful and failed replication events.
  • Create your own applications or scripts written in Microsoft Visual Basic Scripting Edition (VBScript) to extract specific data from Active Directory.
  • View a snapshot of the performance counters on the computer, and the registry configuration of the server.
  • Generate status reports that include direct and transitive replication partners, and detail a record of changes.
  • Display replication topology.
  • Force replication.
  • Display a list of the trust relationships maintained by the domain controller being monitored.

The WordPress.com stats helper monkeys prepared a 2011 annual report for this blog.

Here’s an excerpt:

The concert hall at the Syndey Opera House holds 2,700 people. This blog was viewed about 10,000 times in 2011. If it were a concert at Sydney Opera House, it would take about 4 sold-out performances for that many people to see it.

Click here to see the complete report.

VM Backup – Backing up Virtual Machines with Windows Server 2008 R2 & Hyper-V

Overview

Virtual machines are basically made of files. They contain configuration files, virtual hard disks, snapshot files and saved state files. While running computers are virtual machines can benefit from virtualization, a lot of thought needs to be taken in order to protect the contents of the virtual machines and the VMs themselves, so that if something goes wrong, you can perform a pre-defined list of steps to successfully restore the VMs to a functional and running state.

Note: To install Windows Server Backup, log on to the computer by using the local Administrator account or another account with Administrator privileges. To perform backups or recoveries by using Windows Server Backup, you must be a member of the Administrators or Backup Operators groups.

Performing the backup

To perform the actual VM backup follow these steps:

1. Open Windows Server Backup from the Administrative Tools folder. In the Actions pane, click “Backup Once” (you can, of course, create a schedule for this backup).

 

2. In the “Backup Options” page, select “Different Options” and click Next.

3. In the “Select Backup Configuration” page, select “Custom” and click Next.

4. In the “Select Items for Backup” page, click “Add Items“.

5. In the “Select Items” window, click to select the volumes where the VM configuration files and VM hard disks are located. Also note that while it may look possible to select individual folders, do NOT select individual folders. Only select the entire volume. Failing to select the right volumes will result in a failure for the backup procedure and even if it will seem to you that all items were backed up, in fact you will not be able to restore your VMs. Click Ok.

6. Back in the “Select Items for Backup” page, click “Advanced Settings“.

7. In the “Advanced Settings” window, click to select “VSS Full Backup” and click Ok.

8. Back in the “Select Items for Backup” page, click Ok.

9. In the “Specify Destination Type” page, select the destination for the backup. I chose Local Drives, but you can also perform the backup on remote shares. Click Next.

10. In the “Select Backup Destination” page, use the drop-down list to select your destination. If you plan to backup on an external USB drive, make sure the computer recognizes it before you get to this spot. Also make sure that the destination volume contains enough free disk space for the backup to be place in. Remember that volume level backup are ALWAYS full, therefore if you’ve got 500 GB worth of VMs in one volume, you’ll need to have as much space as that (and preferably more) on your destination volume. Click Ok.

11. In the “Confirmation” page click Backup and let the backup procedure begin.

12. If you immediately switch to the Hyper-V management console, you’ll see that the VMs are being snapshotted. This is not equivalent to taking a Hyper-V snapshot, which in fact is not really a true snapshot and has nothing in relation to VSS snapshots. Because the VSS writer was registered, and because the Integration Services (Components) are installed and enabled on the VMs, they will be successfully backed up without being paused, saved or turned off. In addition, the ICs will inform the VMs that a backup procedure is taking place on the parent partition, so any VSS-aware application that is running inside the VM will also be triggered (which is very important for applications such as SQL, Exchange and so on).

13. Windows Server Backup begins to write the file(s) to disk.

14. When finished, click Close.

Summary

Backing up virtual machines can be a little different than backing up a traditional system.  Because a virtual machine is nothing more than a collection of files, it is important to be especially mindful of the backup process. One oversight along the way can mean a failed VM backup.  Hopefully this article has prepared you to backup your Virtual Machines with Hyper-V using Windows Server Backup.

 

 

Source: Petri

You’ve probably noticed that Windows Server 2003 has a new feature that requests a shutdown reason each time you restart the server. This feature is called the Shutdown Event Tracker.

If you are working in a test environment, you might choose to disable this feature to avoid the hassle of typing in a reason each time you restart. To disable this feature, you can perform the following steps:

1. Click Start, click Run, and type gpedit.msc and press Enter.

2. Expand the Computer Configuration and then Administrative Templates objects. Click on the System object. In the right-hand pane you’ll see several settings appear.

3. Locate and double-click that Display Shutdown Event Tracker setting. The Display Shutdown Event Tracker Properties dialog box opens.

4. Click the Disabled radio button to disable the Shutdown Event Tracker. Click OK.

 

Close the Group Policy Editor console. Now when you shut down this server, you won’t be asked to enter a reason.

To add a snap-in to an existing MMC, complete the following steps:

1. Click Start, point to All Programs, point to Administrative Tools, and then click the name of the custom MMC.

2. On the File menu, click Add/Remove Snap-In.

3. In the Standalone tab in the Add/Remove Snap-In dialog box, click Add.

4. In the Add Standalone Snap-In dialog box, select the snap-in you want to add to the existing MMC and click Add.

5. Enter additional details for the snap-in as described in the previous procedure.

6. When you are finished adding snap-ins, click Close in the Add Standalone Snap-In dialog box. The snap-ins you have added appear in the list in the Add/Remove Snap-In dialog box.

7. In the Add/Remove Snap-In dialog box, click OK. MMC displays the snap-ins you have added in the console tree below Console Root.

To remove a snap-in from an existing MMC, complete the following steps:

1. Click Start, point to All Programs, point to Administrative Tools, then click the name of the custom MMC.

2. On the File menu, click Add/Remove Snap-In.

3. In the Standalone tab in the Add/Remove Snap-In dialog box, select the snap-in you want to delete and click Remove. Then click OK. The snap-in is removed from the console.

To add or remove an extension to a snap-in on an existing MMC, complete the following steps:

1. Click Start, point to All Programs, point to Administrative Tools, and then click the name of the custom MMC.

2. On the File menu, click Add/Remove Snap-In.

3. In the Standalone tab in the Add/Remove Snap-In dialog box, select the snap-in for which you want to

add or remove an extension. Then click the Extensions tab.

4. In the Extensions tab, indicate the extension(s) you want to add or delete, as follows:

❑ To add an extension, click the desired extension.

❑ To remove an extension, clear the Add All Extensions check box and then in the Available Extensions box, clear the check box for the desired extension.

5. Click OK.

6. Expand the snap-in to confirm that the desired extension has been added or removed.

 

1. To restore the system state on a domain controller, first start the computer in Directory Services Restore Mode. To do so, restart the computer and press the F8 key when you see the Boot menu.

2. Choose Directory Services Restore Mode.

3. Choose the Windows 2000 installation you are going to recover, and then press ENTER.

4. At the logon prompt, supply the Directory Services Restore mode credentials you supplied during the Dcpromo.exe process.

5. Click OK to acknowledge that you are using Safe mode.

6. Click Start, point to Programs, point to Accessories, point to System Tools, and then click Backup.

7. Click the Restore tab.

8. Click the appropriate backup media and the system state to restore.

NOTE: During the restore operation, the Winnt\Sysvol folder must also be selected to be restored to have a working sysvol after the recovery process. Be sure that the advanced option to restore “junction points and data” is also selected prior to the restore. This ensures that sysvol junction points are re-created.

9. In the Restore Files to box, click Original Location.

NOTE: When you choose to restore a file to an alternative location or to a single file, not all system state data is restored. These options are used mostly for boot files or registry keys.

10. Click Start Restore.

11. After the restore process is finished, restart the computer.

Flexible Single Master Operation Roles

1. Domain Naming Master —ForestWide Roles

2. Schema Master —ForestWide Roles

3. RID Master (Relative ID Master) — Domain Wide Roles

4. PDC Emulator — Domain Wide Roles

5. Infrastructure Master — Domain Wide Roles

 

Relative ID (RID) Master: — it assigns RID and SID to the newly created object like Users and computers. If RID master is down (u can create security objects up to RID pools are available in DCs) else u can’t create any object one its down. The RID master is responsible for processing RID pool requests from all domain controllers in a particular domain. When a DC creates a security principal object such as a user or group, it attaches a unique Security ID (SID) to the object.

PDC emulator: It works as a PDC to any NT Bdcs in your environment

It works as Time Server (to maintain same time in your network)

It works to change the passwords, lockout etc. The PDC emulator is necessary to synchronize time in an enterprise. Windows 2000/2003 includes the W32Time (Windows Time) time service that is required by the Kerberos authentication protocol. All Windows 2000/2003-based computers within an enterprise use a common time

  • Authentication failures that occur at a given DC in a domain because of an incorrect password are forwarded to the PDC emulator before a bad password failure message is reported to the user.
  • Account lockout is processed on the PDC emulator.
  • Editing or creation of Group Policy Objects (GPO) is always done from the GPO copy found in the PDC Emulator’s SYSVOL share, unless configured not to do so by the administrator.

At any one time, there can be only one domain controller acting as the PDC emulator master in each domain in the forest.

 

Infrastructure Master: This works when we are renaming any group member ship object this role takes care. When an object in one domain is referenced by another object in another domain, it represents the reference by the GUID, the SID (for references to security principals), and the DN of the object being referenced. The infrastructure FSMO role holder is the DC responsible for updating an object’s SID and distinguished name in a cross-domain object reference. At any one time, there can be only one domain controller acting as the infrastructure master in each domain.

Domain Naming Master: Adding / changing / deleting any Domain in a forest it takes care,. This DC is the only one that can add or remove a domain from the directory. There can be only one domain naming master in the whole forest.

Schema Master: It maintains structure of the Active Directory in a forest. The schema master domain controller controls all updates and modifications to the schema. Once the Schema update is complete, it is replicated from the schema master to all other DCs in the directory. There can be only one schema master in the whole forest.

Keys serve as containers in the registry. Keys can contain other keys (subkeys). Keys can also contain value entries, or simply, values. These are the ‘‘substance’’ of the registry. Values comprise three parts: name, data type, and value. The name identifies the setting. The data type describes the item’s data format. The value is the actual data. The following list summarizes data types currently defined and used by the system:

 

  • Binary Value: This data type stores the data in raw binary format, one value per entry. The Registry Editor displays this data type using hexadecimal format.
  • DWORD value: This data type stores data as a four-byte number (32-bit), one value per entry. The Registry Editor can display this data type in binary, hexadecimal, or decimal formats.
  • QWORD value: This data type stores data as a 64-bit number, one value per entry. The Registry Editor can display this data type in binary, hexadecimal, or decimal formats.
  • Expandable string value: This is a variable-length string that includes variables that are expanded when the data is read by a program, service, and so on. The variables are represented by % signs; an example is the use of the %systemroot% variable to identify the root location of the Windows Server 2008 folder, such as a path entry to a file stored in systemroot\System32. One value is allowed per entry.
  • Multi-String value: This data type stores multiple string values in a single entry. String values within an item are separated by spaces, commas, or other such delimiters.
  • String value: This data type stores a single, fixed-length string, and is the most common data type used in the registry.